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1. What qualitative reasoning is

Seven years ago the Journal Artificial Intelligence published a special
volume entitled “Qualitative Reasoning about Physical Systems”[3]—qual-
itative reasoning for short. This special volume proved to be a watershed
for qualitative reasoning research, which inspired a decade of ferment and
innovative exploration. Now qualitative reasoning has reached another wa-
tershed, by returning to its original roots of coping with fundamental engi-
neering tasks. ! As both editors feel that addressing real tasks is crucial to the
success of the qualitative reasoning enterprise, we decided that now would
be a judicious time to recognize and explicitly encourage this focus—through
this special volume.

This introduction conveys our personal perspective on what qualitative
reasoning is about, what are some of the common misconceptions, and where
we would like to see the research headed. The motivation for qualitative rea-
soning arose predominantly from research on engineering problem solving,
which sought techniques for automating engineering practice for a variety
of important tasks—circuit analysis and parameter selection [15,42,41], the
diagnosis and teleological description of bipolar amplifiers [11], tutoring
systems for steam plant operation [19], the design of MOS memory buffers
[48], and the interpretation of geological structures [38].

It quickly became clear that, if we want to capture the skills of an
engineer or technician we must do far more than build bigger simulators
(such as Spice [44]) or equation solvers (such as Macsyma [28])—the

I This direction was particularly evident at the most recent Qualitative Reasoning Workshop
[24].
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computer must somehow embody the common sense of these experts.?2
While these traditional tools are crucial, much of an engineer’s energy
is devoted to problem formulation—deciding when and how these tools
are applied—and interpretation—identifying the significant features of the
analysis results and evaluating their impact with respect to the task being
performed (e.g., identifying faulty components during diagnosis or critical
paths during design).

Thus the heart of the qualitative reasoning enterprise is to develop compu-
tational theories of the core skills underlying engineers, scientists, and just
plain folk’s ability to hypothesize, test, predict, create, optimize, diagnose
and debug physical mechanisms. This perspective both gives us the means
to evaluate new theories (do they address significant components or yield
significant improvements on these tasks?) and places to look for new ideas
(e.g., engineering practice).

From the start the ability to explain how a device works was perceived
as a core skill—due to its value in pinpointing responsibility (e.g., during
diagnosis [7,30,37]). Early papers concentrated primarily on the qualitative,
causal explanation of instantaneous change [10,21,30,31]. A watershed of
the first special volume was the ability to generate causal explanations for
time-evolved behavior [11,14,19,48].

Progress since the first special volume has been extraordinary (see [47]
for examples). The community has become substantially more sophisticated
mathematically—formalizing many aspects of qualitative representations and
reasoning techniques. Research has forged a link between qualitative reason-
ing and traditional numeric and analytic techniques. And work has branched
into a wide variety of new forms of reasoning and ontologies.

There have been growing pains—at times the link to tasks and explana-
tions seems all but lost. While many new reasoning techniques have been
proposed, only a few have used tasks to explicitly establish their impor-
tance or to evaluate their successes and shortcomings. The early work has
been reinterpreted by some as being about event-driven simulation with
qualitative landmarks—not explanation—and a subset of the community
has pursued this direction without providing a compelling motivation or
performing an evaluation with respect to tasks.

The papers in this special volume demonstrate a shift in focus away from
direct extensions of qualitative simulation and envisionment, towards the
explicit treatment of tasks that elucidate important new reasoning tech-
niques.

Several of the papers are directly about tasks: Two are concerned with
aspects of diagnosis—one proposes the use of temporally abstract behaviors

2See the introduction to [47] for a longer discussion of this.
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to avoid costly reasoning about temporal details (Hamscher), and a sec-
ond applies qualitative envisionment to data interpretation (DeCoste). A
third focuses on encoding the numerical exploration process of an expert
dynamicist, allowing the expert to be pulled out of the loop (Yip).

Two papers formalize new reasoning techniques that arose out of explicit
research on tasks. The paper on order of magnitude reasoning (Raiman)
arose from the difficulty of dealing with tolerances in analog diagnosis, and
the intuition that symptoms are significant deviations from normal behavior
[5]. The work on hybrid symbolic algebra (Williams) arose from the task
of verification during conceptual design [50], and the inability to show that
predicted behaviors will occur, using purely qualitative techniques.

The papers by Addanki et al. and Falkenhainer/Forbus are two examples
of a large body of research breaking ground into the area of modeling—
including model selection [46], composition [29], abstraction [51] and
compilation [4,12,17]—an area essential to progress in tasks like diagnosis
[8]. And of the three papers concerned directly with envisionment and
qualitative simulation, (Kuipers et al., Forbus et al., Joskowicz/Sacks), the
first is a clear formulation that builds upon earlier work on higher-order
derivatives [13,48], and the last two branch into the exciting new subarea
of kinematics and spatial reasoning.

2. What qualitative reasoning is not

Like any exciting new field of study, qualitative reasoning is in constant
ferment, with rapidly changing and often inconsistent goals and perspectives.
This has made the field very exciting, but it can leave an observer (and even
participants) confused about the current progress, predominant beliefs and
aspirations of the field. In this section we hope to shed light by examining
some of the more common misconceptions (e.g., as raised in [18,34]).

Note that several of these misconceptions were introduced by early writ-
ings in the field (including our own), which were groping with “What is
an appropriate focus for qualitative reasoning research”, given a broad, and
sometimes incompatible set of possibilities. It is not our intent here to de-
fend any early writing, but to convey our current thoughts on the topic, and
to convey what we believe to be the predominant directions of the research
community:

Misconception 1. Qualitative reasoning eschews quantitative information.
Some researchers outside the community take the term “qualitative rea-
soning” to be an implicit exclusion of quantitative information—numeric
or symbolic [18]. This is by no means the case. The first application of
qualitative reasoning was its use to guide the appropriate application of
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quantitative analysis [9], and the coupling of qualitative and quantitative
information has been a continuous topic ever since.

The papers in this special volume demonstrate the importance given to
coupling qualitative and quantitative. Raiman strengthens the qualitative
calculus with an order of magnitude algebra, while Williams argues that
a qualitative/quantitative algebra coupled with symbolic manipulation is
the key to overcoming certain well-known problems with purely qualitative
formalisms [23,40]. Both Forbus et al. and Joskowicz/Sacks argue for the
necessity of quantitative metric spaces during geometric prediction, and
the approaches in these two papers, along with those by Yip and DeCoste,
extract qualitative features from quantitative data. Furthermore, Yip’s use of
qualitative knowledge to guide numerical simulation is directly in the spirit
of [9], mentioned above. Finally, the two approaches to model selection,
by Addanki et al. and Falkenhainer/Forbus, are explicitly applied to both
qualitative and quantitative models. There is an even larger body of work
on incorporating quantitative information not represented. This includes
interval arithmetic reasoning [33,39], its application to temporal prediction
[25,38,49], the integration of numeric simulation [2,20], and the use of
piecewise linear [32], and order of magnitude reasoning [6,26,27,45].

Misconception 2. Qualitative reasoning eschews sophisticated mathematics.
This is a refinement of the above claim. It suggests that, while qualitative
reasoning does admit quantitative techniques, it is concerned only with the
general, common sense techniques used by layman (e.g., arithmetic) [34]. It
is true that qualitative reasoning has focused primarily on general, “common
sense” techniques. However, it has not been the intent to segregate or exclude
more sophisticated mathematical tools. We would like to encourage the use
of whatever tools are the most appropriate for the task. And we view work
in recent years to incorporate results in traditional symbolic algebra, interval
arithmetic and algebra, numeric simulation and dynamics as an important
trend.

But an important caveat is that a mathematical tool should not be judged
better simply because it provides more information. In the late 1970s the at-
tempts to apply Macsyma—a moderately sophisticated technique—to circuit
analysis and synthesis [15,42] showed that advanced techniques can carry
with them an extreme computational cost, which prevents them from being
used indiscriminantly. This experience taught us three lessons, first that an
expert is not the one with the more sophisticated mathematical tools, but
the one who knows which tool—a scalpel or axe—is most appropriate for the
task at hand. Second, that for many tasks or portions of tasks one can get
away with suprisingly little information and extremely weak inferences; thus
the cost in acquiring much more precise information is sometimes avoid-
able. Third, like curare in medicine, the more computationally advanced
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techniques can be extremely valuable, but are best used with moderation.
These three lessons have had a significant impact on both of our research.
We believe that through qualitative reasoning, an engineer identifies where
the appropriate tool is required. For example, ambiguities during qualitative
analysis indicate places where more quantitative techniques are required
[48]. Likewise the research methodology that we and others have pursued
is to push the use of weak, qualitative information as far as it can go, and
to use its failure (both in terms of expressivity and computational cost) to
better understand both what additional knowledge is required and how it
is best applied. Its suprising that what we perceive as progress—identifying
where a set of techniques fail, and thus require additional knowledge—is
taken by some as the failure of the qualitative reasoning endeavor [34].

Misconception 3. Qualitative reasoning is a theory of naivism. This is a differ-
ent slant on the no advanced mathematics misconception, where “naivism”,
carries with it the connotation of endorsing faulty reasoning and abandoning
existing scientific and mathematical theories.

It is true that work in cognitive psychology on mental models [22]
has tried to model, for example, how school children learn physics in the
context of developing better educational tools. And of course there is Pat
Hayes’s “naive physics manifesto,” which is a reaction against the study of
blocks world micro-theories, and argues that research in automated theorem
proving should instead be driven by real domain theories. However, while
we believe both to be worthy endeavors, the majority of the research has
been driven by engineering problem solving or some other form of expert
reasoning (e.g., medical diagnosis).

Misconception 4. Qualitative reasoning is inventing a new physics. This often
goes along with the naivism claim. While some researchers early on used
principles or representations inconsistent with traditional formalisms [1,19],
many have paid careful attention to tying qualitative reasoning formalisms
to existing theories of physics—circuit theory and physical system dynamics
[14,48], kinematics (Joskowicz/Sacks, Forbus et al.) and thermodynamics
[36]—and mathematics—calculus and analysis [14,48], differential equa-
tions [23,45], algebra [17,43] and (Williams), interval algebra [33,40] and
dynamics [32] as well (Yip).

Misconception 5. Qualitative reasoning is just event driven simulation. Some
argue that qualitative reasoning is just event-driven simulation using finite
landmarks [34]. While this might be an adequate characterization of the
work on QSIM [23] and some of its successors, it should not be equated
or confused with the goals of the larger community. First, the heart of qual-
itative reasoning is capturing the core skills to perform a variety of tasks.
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Simulation is just a small fraction of a broad set of skills currently being
pursued, including order of magnitude reasoning, qualitative symbolic alge-
bra, model selection/composition/abstraction/compilation, sensitivity and
comparative analysis, guided numerical exploration, and limited forms of
propositional and terminological reasoning.

Second, even if we concentrate just on qualitative envisionment/simula-
tion, describing them as event-driven simulation with qualitative landmarks
fails to capture the essential characteristics of techniques like QUAL [11,14],
qualitative process theory [19], temporal qualitative analysis [48] and
temporal constraint propagation [49]. These techniques were developed
with the belief that explanation of time-varying behavior is a core skill.
While traditional simulation and analysis tools tell us what behavior occurs,
what most distinguishes these four qualitative reasoning techniques is the
ability to explain how the interesting aspects of the behavior came about.
This is important to tasks such as diagnosis and design which require
reasoning about the connection between internal mechanisms and behavior.
Given these points, event-driven simulation with landmarks captures only a
fraction of what qualitative reasoning is really about.

3. Wither qualitative reasoning?

In the early 1980s the community made a bet—that qualitative reasoning
is at the core of an engineer, scientist or just plain folk’s ability to perform
a wide variety of tasks. While there is no one best way to identify and
explore new core skills, it is money lost unless we take tasks seriously. This
does not mean simply adding boiler plate to the beginning of our papers
about the wonders of qualitative reasoning with respect to diagnosis, design
or automated tutoring; rather:

* ... we need 1o perform task analyses of reasoning techniques. We must
be careful not to assert without justification that a new qualitative
representation highlights interesting features, nor should we argue
the superiority and sophistication of our techniques because they
are more precise. Rather, we need to carefully analyze the tasks we
are serving—both to argue that our reasoning techniques address
significant, unsolved problems with respect to the state of the art in
those task areas, and to argue why our qualitative representations
and techniques produce the right information.

e ... we need to explicitly perform research on tasks. 1t is very diffi-
cult to assess what types of reasoning are truly important for a task
without simultaneously developing a computational theory of that
task. Likewise, it is difficult to assess the hypothesized importance of



Qualitative reasoning about physical systems 7

a reasoning technique without explicitly applying it to the intended
task. In the editors’ recent experience with tasks, what was most
crucial (e.g., minimum entropy and probabilistic, best-first search
for diagnosis [16], and qualitative algebraic and terminological rea-
soning for design [50]) turned out to be very different from what
we anticipated. Thus, explicit research on tasks also provides fuel for
identifying important new forms of reasoning.

o ... we need to participate in task oriented communities. A commu-
nity, like qualitative reasoning or knowledge representation, con-
cerned with an agent’s core reasoning skills is certainly crucial to
the AI pursuit. Nevertheless qualitative reasoning cannot exist as an
insular community. The community’s interests are simply too di-
verse to provide any task proper attention. Nor are the techniques
of qualitative reasoning sufficient in themselves to perform any one
task. Instead, the critical attention and diversity of techniques can
only be achieved by participating in task oriented communities (e.g.,
model-based diagnosis, design, intelligent tutoring).
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